Abstract

PurposeOptimal anatomical reduction and stable fixation of acetabular fractures are important in avoiding secondary dislocation and osteoarthritis. Biomechanical studies of treatment options of acetabular fractures aim to evaluate the biomechanical properties of different fixation methods. As the setup of the biomechanical test can influence the experimental results, this review aimed to analyze the characteristics, comparability and clinical implications of studies on biomechanical test setups and finite element analyses in the fixation of acetabular fractures.MethodsA systematic literature research was conducted according to the PRISMA guidelines, using the PubMed/MEDLINE and Web of Science databases. 44 studies conducting biomechanical analyses of fixation of acetabular fractures were identified, which met the predefined inclusion and exclusion criteria and which were published in English between 2000 and April 16, 2021. The studies were analyzed with respect to distinct parameters, including fracture type, material of pelvis model, investigated fixation construct, loading direction, loading protocol, maximum loading force, outcome parameter and measurement method.ResultsIn summary, there was no standardized test setup within the studies on fixation constructs for acetabular fractures. It is therefore difficult to compare the studies directly, as they employ a variety of different test parameters. Furthermore, the clinical implications of the biomechanical studies should be scrutinized, since several test parameters were not based on observations of the human physiology.ConclusionThe limited comparability and restricted clinical implications should be kept in mind when interpreting the results of biomechanical studies and when designing test setups to evaluate fixation methods for acetabular fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.