Abstract

Recently we have demonstrated the ability of monoclonal antibodies (mAb) specific for bone morphogenetic protein (BMP)-2 immobilized on different scaffolds to mediate bone formation, a process referred to as Antibody Mediated Osseous Regeneration (AMOR). One of the key properties of regenerated bone is its biomechanical strength, in particular in load-bearing areas. This study sought to test the hypothesis that the biomechanical strength of regenerated bone depends of the mode of regeneration, as well as the scaffold used. Four different scaffolds, namely titanium granules (Ti), alginate hydrogel, anorganic bovine bone mineral (ABBM), and absorbable collagen sponge (ACS) were functionalized with anti-BMP-2 or isotype control mAb and implanted into rat critical-size calvarial defects. The morphology, density and strength of the regenerated bone were evaluated after 8 weeks. Results demonstrated that scaffolds functionalized with anti-BMP-2 mAb exhibited varying degrees of bone volume and density. Ti and ABBM achieved the highest bone volume, density, and strength of bone. When anti-BMP-2 mAb was immobilized on Ti or ABBM, the strength of the regenerated bone were 80% and 77% of native bone respectively, compared with 60% of native bone in sites implanted with rh-BMP-2. Control interventions with isotype mAb did not promote considerable bone regeneration and exhibited significantly lower mechanical properties. SEM analysis showed specimens immobilized with anti-BMP-2 mAb formed new bone with organized structure bridging the crack areas. Altogether, the present data demonstrated that the morphological and mechanical properties of bone bioengineered through AMOR could approximate that of native bone, when appropriate scaffolds are used. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1465-1473, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.