Abstract

Leakage of current in oxide layers is the main issue for higher speed and denser resistive random-access memory. Defect engineering played a substantial role in meeting this challenge by doping or producing controlled interstitial defects or active sites. These controlled active sites enabled memory cells to form a stable and reproducible conduction filament following an electrochemical metallization model. In this study, a defect-abundant lime peel extract (LPE)-mediated anatase TiO2 thin film was fabricated using a simple hydrothermal route. The detailed structural and morphological analysis of the bioactive anatase TiO2-LPE thin film reveals the homogeneous growth of TiO2 flowers and distinct features in terms of controlled defects as compared to simple anatase TiO2. These interstitial defects (Ti+3 and Ti+4) behave as active sites for cation migrations along highly conductive K1+ ions because of the mediation of LPE. The defect-free surface reveals slight surface roughness (4.8 nm) that successfully minimizes leakage of current. The strategy enabled a reliable conductive bridge filament, which can replicate with no more electric degradation. The Ag/TiO2-LPE/FTO-based memory cell demonstrates reproducible bipolar resistive switching along with a high ON/OFF ratio (>105), excellent endurance (1.5 × 103 cycles), and long-term retention (105 s) without any electrical degradation. Furthermore, green-synthesized TiO2-LPE nanoparticles have shown superior antibacterial activity as compared to other green syntheses of different plants or fruits against the toxic microorganisms present in inorganic media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.