Abstract

The high adsorption capacity of the phase change mediums in porous supports is a key requirement for the shape-stabilized phase change materials (ss-PCMs) with high latent heat. Here, ship-shaped diatom (Pennales) frustule-based composite ss-PCMs with high polyethylene glycol (PEG) absorption capacity and high phase change enthalpy was prepared by a solution-assisted vacuum impregnation method for high-performance thermal energy storage. To improve the diatom frustules’ specific surface area and form a multi-level pore structure, the effects of calcination temperature on the microstructure of diatom frustules were studied. It was found that diatom frustules calcined at 400 °C (400CDF) had a relatively high specific surface area (~155.9 m2/g) with a well-maintained skeleton, which was a suitable PEG supporter. The devised PEG/400CDF composites with 72.7% loading of PEG4000 that had a latent heat value of 128.9 J/g for melting and 136.7 J/g for freezing, and the relative enthalpy efficiency reached up to 97.7%. The composite ss-PCMs exhibited thermal and chemical stability even after 200 thermal cycles. The current work demonstrated that ss-PCMs from biomass-based artificially cultured diatoms could slow the spread of heat by absorbing thermal energy. Moreover, the phase change mechanisms of the PEG/CDF composites under the nanoconfinement in the diatom frustules framework were also explored to explain the obtained high adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.