Abstract

Biomass-derived activated carbon is one of the promising electrode materials in supercapacitor applications. In this work bio-waste (oil extracted from eucalyptus leaves) was used as a carbon precursor to synthesize carbon material with ZnCl2 as a chemical activating agent and activated carbon was synthesized at various temperatures ranging from 400 to 800 °C. The activated carbon at 700 °C showed a surface area of 1027 m2 g−1 and a specific capacitance of 196 F g−1. In order to enhance the performance, activated carbon was doped with nitrogen-rich urea at a temperature of 700 °C. The obtained activated carbon and N-doped activated carbon was characterized by phase and crystal structural using (XRD and Raman), morphological using (SEM), and compositional analysis using (FTIR). The electrochemical measurements of carbon samples were evaluated using an electrochemical instrument and NAC-700 °C exhibited a specific capacitance of 258 F g−1 at a scan rate of 5 mV s−1 with a surface area of 1042 m2 g−1. Thus, surface area and functionalizing the groups with nitrogen showed better performance and it can be used as an electrode material for supercapacitor cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.