Abstract

Systematic information integration of multiple-related microarray studies has become an important issue as the technology becomes mature and prevalent in the past decade. The aggregated information provides more robust and accurate biomarker detection. So far, published meta-analysis methods for this purpose mostly consider two-class comparison. Methods for combining multi-class studies and considering expression pattern concordance are rarely explored. In this article, we develop three integration methods for biomarker detection in multiple multi-class microarray studies: ANOVA-maxP, min-MCC and OW-min-MCC. We first consider a natural extension of combining P-values from the traditional ANOVA model. Since P-values from ANOVA do not guarantee to reflect the concordant expression pattern information across studies, we propose a multi-class correlation (MCC) measure to specifically seek for biomarkers of concordant inter-class patterns across a pair of studies. For both ANOVA and MCC approaches, we use extreme order statistics to identify biomarkers differentially expressed (DE) in all studies (i.e. ANOVA-maxP and min-MCC). The min-MCC method is further extended to identify biomarkers DE in partial studies by incorporating a recently developed optimally weighted (OW) technique (OW-min-MCC). All methods are evaluated by simulation studies and by three meta-analysis applications to multi-tissue mouse metabolism datasets, multi-condition mouse trauma datasets and multi-malignant-condition human prostate cancer datasets. The results show complementary strength of the three methods for different biological purposes. http://www.biostat.pitt.edu/bioinfo/. Supplementary data is available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.