Abstract

Apoptosis is an essential process for the maintenance of liver physiology. The ability to noninvasively image apoptosis in livers would provide unique insights into its role in liver disease processes. In the present work, we established a stable mouse model by hydrodynamics methods to study the activity of caspase-3 and evaluate the effect of the apoptosis inhibitors in mouse livers under true physiological conditions by bioluminescence imaging. The reporter plasmid attB-ANLuc(DEVD)BCLuc that contains fragment of attB and ANLuc(DEVD)BCLuc was codelivered with the mouse-codon optimized φC31 (φC31o) integrase plasmids specifically to mouse liver by hydrodynamic injection procedure. Then, φC31o integrase mediated intramolecular recombination between wild-type attB and attP site in mice, and thus the reporter expression cassette attB-ANLuc(DEVD)BCLuc was integrated permanently into mouse liver chromosome. We used these mice to characterize in vivo activation of caspase-3 upon treatment with LPS/D-GalN. Our data show that liver apoptosis could be reflected by the activity of luciferase. The shRNA targeting caspase-3 protein or apoptosis inhibitors could effectively downregulate luciferase activity in vivo. Also, this model could be used to measure caspase-3 activation during inflammatory and infectious events in vivo as verified by infected with MHV-3. This model could be used for screening anti-apoptosis compounds target mouse livers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.