Abstract

Three-dimensional (3D) structures such as nanowires, nanotubes, and nanorods have the potential to increase surface area, reduce light reflection, and shorten charge carrier transport distances. The assembly of such structures thus holds great promise for enhancing photoelectrochemical solar cell efficiency. In this study, genetically modified Tobacco mosaic virus (TMV1cys) was used to form self-assembling 3D nanorod current collectors and low light-reflecting surfaces. Photoactive CuO was subsequently deposited by sputtering onto these patterned nanostructures, and these structures were examined for photocurrent activity. CuO thicknesses of 520 nm on TMV1cys patterned current collectors produced the highest photocurrent density of 3.15 mA/cm(2) yet reported for a similar sized CuO system. Reflectivity measurements are in agreement with full-wave electromagnetic simulations, which can be used as a design tool for optimizing the CuO system. Thus the combined effects of reducing charge carrier transport distance, increasing surface area, and the suppression of light reflection make these virus-templated surfaces ideal for photoelectrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.