Abstract

Biological pretreatment is a promising way to overcome the biorecalcitrance of cleaving the supermolecular structure of lignocellulose by lignin degrading enzymes from microorganisms. Solid state fermentation of corn stover with the white-rot fungus Phanerochaete chrysosporium was carried out and the efficiency of this pretreatment was evaluated. The enzymatic hydrolysis yield reached a maximum when the corn stover was biologically pretreated for nine days, and the hydrolysis yield decreased sharply if the solid state fermentation was carried out for more than nine days. A possible explanation for this sharp decrease is that not only the lignin degrading enzymes (LiP and MnP) were secreted, but also other metabolites, which were toxic or fatal to the hydrolysis enzymes resulting in the lower hydrolysis yield were generated during the prolonged period of biopretreatment. These results are useful to help determine the optimal timing and to understand the lignin structure and degradation mechanism in biological pretreatment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.