Abstract

A novel heterotrophic nitrification and aerobic denitrification (HNAD) bacteria, identified as Bacillus thuringiensis strain WXN-23, was isolated from husk feed filtrate of a pig farm. It was the first report of Bacillus thuringiensis with the capability for HNAD and could adapt to the condition of low Carbon/Nitrogen (C/N) ratio. Nitrogen could be efficiently removed by the strain WXN-23 in simulated wastewater, be it in single or mixed form nitrogen sources. The nitrogen balance revealed that 63.5% of the initial nitrogen (5.32 mg) was lost in the form of N2. The conditions for maximum total nitrogen (TN) removal efficiency (95.996%) were shaking speed of 126.89 r/min, a carbon C/N ratio of 5.91, the temperature of 32.81 °C, and a pH value of 8.17. The nitrification-denitrification metabolic pathway (NH4+–N→NH2OH→NO2−-N→NO3−-N→NO2−-N→NO→N2O→N2) under aerobic conditions was determined on the basic of characteristic of N removal, N balance analysis, enzyme assay and functional genes amplification results. Strain WXN-23 was effective at wastewater treatment, with TN, NH4+-N, NO3−-N and NO2−-N removal efficiencies of 82.12%, 86.74%, 90.74% and 100%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.