Abstract

Bioinspired strategies have recently emerged as novel approaches for designing a functionalized nanovector with enhanced tumor targeting and therapeutic efficacy. Herein, a virus-like Fe3O4/Au@C nanovector is described for programmable drug delivery via hierarchical targeting. Specifically, the virus-like Fe3O4/Au@C nanovector is synthesized via a simple hydrothermal process, and then the spiky surface of which is camouflaged via doxorubicin (DOX)-conjugated polyethylene glycol (PEG), constructing an innovative virus-like core/spherical shell biomimetic nanomedicine (Fe3O4/Au@C-DOX-PEG), which is conducive to improve bioavailability and reduce adverse effects. After systemic administration, the as-prepared nanomedicine is capable of facilitating effective tumor accumulation and deep tumor penetration with the assistance of an external magnetic field and endogenous pH stimuli. Simultaneously, in response to the acidic tumor microenvironment, Fe3O4/Au@C-DOX nanocomposites are released and exhibit excellent performance in cellular internalization through a virus-mimetic rough surface. Furthermore, the in vivo experiments identify that the unique nanomedicine is bestowed with an effective targeting tumor, prominent antitumor efficacy, and reduced systemic toxicity. Such a bioinspired hierarchical targeting nanoplatform holds promising potential for enhanced chemotherapeutic intracellular delivery and tumor theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.