Abstract

Facile and a novel technique for bioinspired synthesis of silver nanoparticles (AgNPs) using an aqueous extract of mango (Mangifera indica) flower as stabilizing and reducing agent was demonstrated. The formation of AgNPs and AgNPs/rGO nanocomposites were confirmed through extensive experimental characterization and numerical analysis. Both, AgNPs and AgNPs/rGO nanocomposites showed excellent catalytic performance in catalytic hydrogenation of 4-nitrophenol and azo bond in dye molecules. The rGO supported Ag nanocomposites exhibited improved catalytic activity compared to AgNPs due to the enhancement of surface area. Electrochemical analysis of AgNPs/rGO nanocomposites showed specific capacitance (SC) of ∼532 F g−1 at a current density of 1.0 A g−1. About 92% retention in SC after 2000 charge-discharge cycles suggested long-term electrochemical cyclic stability as supercapacitor electrode materials. The biogenic nano-particles and composites implied that the rGO reinforced Ag excellent applicants as hydrogenation refining materials. All these observations demonstrated a novel, eco-cost effective and estimable candidates as hydrogenation refining materials and electrode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.