Abstract

Cells were continuously exposed to oxidative damage by overproduction of reactive oxygen species (ROS) when they contacted implanted biomaterials. The strategy to prevent cells from oxidative injures remains a challenge. Inspired by the antioxidant defense system of cells, we constructed a biocompatible and ROS-responsive architecture on the substrate of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS). The strategy was based on fabrication of architectures through reactive electrospinning of mixture including SEBS, acylated Pluronic F127, copolymer of poly(ethylene glycol) diacrylate and 1,2-ethanedithiol (PEGDA-EDT), and antioxidants (AA-2G) and ROS-triggered release of AA-2G from microfibers to detoxify the excess ROS. We demonstrated that the stable and hydrophilic architecture was constructed by phase separation of SEBS/F127 components and cross-linking between polymer chains during electrospinning; the ROS-responsive fibers controlled the release of AA-2G and the interaction of AA-2G with ROS reduced the oxidative damage to cells. The bioinspired architecture not only reduced mechanical and oxidative damage to cells but also maintained normal ROS level for physiological hemostasis. This work provides basic principles to design and develop antioxidative biomaterials for implantation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.