Abstract

Biomimetic catalysts, ranging from small-molecule metal complexes to supramolecular assembles, possess many exciting properties that could address salient challenges in industrial-scale manufacturing. Inspired by natural enzymes, these biohybrid catalytic systems demonstrate superior characteristics, including high activity, enantioselectivity, and enhanced aqueous solubility, over their fully synthetic counterparts. However, instability and limitations in the prediction of structure-function relationships are major drawbacks that often prevent the application of biomimetic catalysts outside of the laboratory. Despite these obstacles, recent advances in synthetic enzyme models have improved our understanding of complicated biological enzymatic processes and enabled the production of catalysts with increased efficiency. This review outlines important developments and future prospects for the design and application of bioinspired and biohybrid systems at multiple length scales for important, biologically relevant, clean energy transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.