Abstract
Lignin-derived compounds (LDCs) bioconversion into lipids is a promising yet challenging task. This study focuses on the isolation of the ligninolytic bacterium Citricoccus sp. P2 and investigates its mechanism for producing lipids from LDCs. Although strain P2 exhibits a relatively low lignin degradation rate of 44.63%, it efficiently degrades various concentrations of LDCs. The highest degradation rate is observed when incubated with 0.6 g/L vanillic acid, 0.6 g/L syringic acid, 0.8 g/L p-coumaric acid, and 0.4 g/L phenol, resulting in respective lipid yields of 0.16 g/L, 0.13 g/L, 0.24 g/L, and 0.13 g/L. The genome of strain P2 provides insights into LDCs bioconversion into lipids and stress tolerance. Moreover, Citricoccus sp. P2 has been successfully developed a non-sterilized lipid production using its native alkali-halophilic characteristics, which significantly enhances the lipid yield. This study presents a promising platform for lipids production from LDCs and has potential to promote valorization of lignin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.