Abstract

This article presents a new design concept of a glucose oxidase (GOD) electrode as an anode for a biofuel cell based on plasma-polymerized thin film (PPF) of dimethylaminomethylferrocene (DMAMF), which plays a role as an electron transfer mediator between the active site of the enzyme and anodic electrode. The configuration of the anode is a multilayer mixture of DMAMF-PPF and GOD, in which a nano-thin DMAMF-PPF containing a redox mediator was plasma-deposited directly onto a GOD-physisorbed electrode. The optimized biofuel cell with bioanode, in a 20mM phosphate buffer solution of pH 7.4 containing 10mM glucose, exhibited a maximum power density of 2.7µW/cm2 at 20°C. The film deposition was performed using microfabrication-compatible organic plasma, which therefore suggests this fabrication process has significant potential for enabling high throughput production of micro biofuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.