Abstract

Investigation of diseases of the bile duct system and identification of potential therapeutic targets are hampered by the lack of tractable in vitro systems to model cholangiocyte biology. Here, we show a step-wise method for the differentiation of murine Lgr5+ liver stem cells (organoids) into cholangiocyte-like cells (CLCs) using a combination of growth factors and extracellular matrix components. Organoid-derived CLCs display key properties of primary cholangiocytes, such as expressing cholangiocyte markers, forming primary cilia, transporting small molecules and responding to farnesoid X receptor agonist. Integration of organoid-derived cholangiocytes with collagen-coated polyethersulfone hollow fiber membranes yielded bioengineered bile ducts that morphologically resembled native bile ducts and possessed polarized bile acid transport activity. As such, we present a novel in vitro model for studying and therapeutically modulating cholangiocyte function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.