Abstract
A bioenergetics model was developed and applied to questions of habitat use and migration behavior of nonindigenous European green crab (Carcinus maenas) in Willapa Bay, Washington, USA. The model was parameterized using existing data from published studies on the ecology and physiology ofC. maenas and allied brachyuran crabs., Simulations of the model were run describing four scenarios of habitat use and behavior during a 214-d simulation period (April–October) including crabs occupying mid littoral habitat, high littoral habitat, sublittoral habitat, and sublittoral habitat but undertaking intertidal migrations. Monthly trapping was done along an intertidal gradient in Willapa Bay to determine the actual distribution of crabs for the same time interval as the simulation period, and model results were compared to the observed pattern. Model estimates suggest no intrinsic energetic incentive for crabs to occupy littoral habitats since metabolic costs were c. 6% higher for these individuals than their sublittoral counterparts. Crabs in the littoral simulations were also less efficient than sublittoral crabs at converting consumed energy into growth. Monthly trapping revealed thatC. maenas are found predominantly in mid littoral habitats of Willapa Bay and there is no evidence of resident sublittoral populations. The discrepancy intimates the significance of other factors, including interspecific interactions, that are not incorporated into the model but nonetheless increase metabolic demand. Agonistic encounters with native Dungeness crabs (Cancer magister) may be chief among these additional costs, andC. maenas may largely avoid interactions by remaining in littoral habitats neglected by native crabs, such as meadows of nonindigenous smooth cordgrass (Spartina alterniflora). AdultC. maenas in Willapa Bay may occupy tidal elevations that minimize such encounters, and metabolic costs, while simultaneously maximizing submersion time and foraging opportunities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.