Abstract

Twin-arginine translocase (Tat) is involved in the translocation of fully folded proteins in a process that is driven by the proton motive force. In most prokaryotes, the Tat system transports only a small proportion of secretory proteins, and Tat substrates are often cofactor-containing proteins that require folding before translocation. A notable exception is found in halophilic archaea (haloarchaea), which are predicted to secrete the majority of their proteins through the Tat pathway. In this study, we have analysed the translocation of a secretory protein (AmyH) from the haloarchaeon Haloarcula hispanica. Using both in vivo and in vitro translocation assays, we demonstrate that AmyH transport is Tat-dependent, and, surprisingly, that its secretion does not depend on the proton motive force but requires the sodium motive force instead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.