Abstract

Proton motive force (PMF), intracellular end product concentrations, and ATP levels were determined when a steady-state Lactobacillus plantarum 8014 anaerobic chemostat culture was shifted to an aerobic condition or was shifted from pH 5.5 to 7.5. The PMF and intracellular ATP levels increased immediately after the culture was shifted from anaerobic to aerobic conditions. The concentrations of intracellular lactate and acetate, which exported protons that contributed to the proton gradient, changed in the same fashion. The H+/lactate stoichiometry, n, varied from 0.8 to 1.2, and the H+/acetate n value changed from 0.8 to 1.6 at 2 h after the shift to aerobic conditions. The n value for acetate excretion remained elevated at aerobic steady state. When the anaerobic culture was shifted from pH 5.5 to 7.5, intracellular ATP increased 20% immediately even though the PMF decreased 50% as a result of the depletion of the transmembrane proton gradient. The H+/lactate n value changed from 0.7 to 1.8, and n for H+/acetate increased from 0.9 to 1.9 at pH 7.5 steady state. In addition, the H+/acetate stoichiometry was always higher than the n value for H+/lactate; both were higher in alkaline than aerobic conditions, demonstrating that L. plantarum 8014 coexcreted more protons with end products to maintain intracellular pH homeostasis and generate proton gradients under aerobic and alkaline conditions. During the transient to pH 7.5, the n value for H+/acetate approached 3, which would spare one ATP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.