Abstract

A novel estuarine bacterial strain, Solibacillus silvestris AM1, produces an extracellular, thermostable and fibrous, glycoprotein bioemulsifier (BE-AM1). The amyloid nature of the bioemulsifier (BE-AM1) was confirmed by biophysical techniques (Congo red based polarization microscopy, ThioflavinS based fluorescent microscopy, fibrous arrangement in transmission electron microscopy and secondary structure measurement by FTIR and CD spectrum analysis). Cell-bound BE-AM1 production by S. silvestris AM1 during the mid-logarithmic phase of growth coincided with a decrease in cell surface hydrophobicity, and an increase in cell autoaggregation and biofilm formation. It was observed that the total interfacial interaction energy () for the surface of the bioemulsifier producing S. silvestris AM1 and different derivatized surfaces of polystyrene (silanized and sulfonated) was found to support biofilm formation. This study has revealed that the BE-AM1, a bacterial bioemulsifier, is a functional amyloid and has a role in biofilm formation and cell surface modulation in S. silvestris AM1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.