Abstract

The layer of titanium dioxide (TiO(2)) of the implant is chronically exposed to the internal electrolyte milieu in the peri-implant biological compartment. Corrosion results from electrochemical attack and ensuing gradual degradation of the metallic materials and is thus of biological interest when these biomaterials are employed in clinical implantology. Herein we evaluated and compared the chronic effect and the biodistribution of TiO(2) administered subcutaneously or intraperitoneally. We propose that the compartmentalization of titanium in the area of subcutaneous injection would reproduce the biological compartment of the implant and its microenvironment from which metal ions could be released and migrate systemically. Potential TiO(2) deposits were identified and characterized in skin, liver and lung by histological and EDX analyses. After both treatments, the skin, liver, and lungs exhibited histological evidence of TiO(2) deposits. In order to characterize in situ macrophage-like cells, tissue sections were immunohistochemically stained for CD68. Tissue specimens from all organs assayed showed positive staining for anti-macrophage monoclonal antibody CD68 (PGM1). Despite the compartmentalization of titanium within nodular areas in rats treated subcutaneously, systemic migration occurred. We concluded that systemic migration of TiO(2) occurred regardless of the administration route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.