Abstract

The development of heterogeneous catalysts for biodiesel production became a hot topic among scientists because of its many advantages including easy separation and catalyst reusability. In this study, multi-walled carbon nanotubes supported zinc oxide (MWCNTsZ) as a solid acid catalyst had been successfully prepared via the stober-like process. There are several % loading of ZnO variations ranging from 10 – 35 % of catalyst weight. These catalysts were characterized by x-ray diffraction (XRD), BET surface area analysis, and scanning electron microscope with energy-dispersive x-ray spectroscopy (SEM-EDX) analysis. Transesterification of kesambi (Schleichera oleosa) oil also had been done to test the activity of the solid catalyst. The potential of this catalyst is shown from its large surface area with the maximum surface area until 409 m2/gram. However, the quantity of dispersed zinc oxide (ZnO) on multi-walled carbon nanotubes (MWCNTs) via that modified Stober preparation is quite small lower than 5% weight. This phenomenon is resulting in a low yield of biodiesel after 3 h of transesterification reaction. The highest yield of biodiesel is obtained with 20% weight of loading ZnO variable producing 13.82% yield of methyl ester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.