Abstract

ABSTRACTThe present study was appraised using response surface methodology for process optimization owing to strong interaction of reaction variables: NaOCH3 catalyst concentration (0.25–1.50%), methanol/oil molar ratio (3:1–9:1), reaction time (30–90 min), and reaction temperature (45–65°C). The quadratic polynomial equation was determined using response surface methodology for predicting optimum methyl esters yield from Cannabis sativa oil. The analysis of variance results indicated that molar ratio and reaction temperature were the key factors that appreciably influence the yield of Cannabis sativa oil methyl esters. The significant (p < 0.0001) variable interaction between molar ratio × catalyst concentration and reaction time × molar ratio was observed, which mostly affect the Cannabis sativa oil methyl esters yield. The optimum Cannabis sativa oil methyl esters yield, i.e., 86.01% was gained at 53°C reaction temperature, 7.5:1 methanol/oil molar ratio, 65 min reaction time, and 0.80% catalyst concentration. The results depicted a linear relationship between observed and predicted values. The residual analysis predicted the appropriateness of the central composite design. The Cannabis sativa oil methyl esters, analyzed by gas chromatography, elucidated six fatty acid methyl esters (linoleic, α-linolenic, oleic, palmitic, stearic, and γ-linolenic acids). In addition, the fuel properties, such as kinematic viscosity at 40°C; cetane number; acid value; flash point; cloud, pour, and cold filter plugging points; ash content; density; and sulphur content, of Cannabis sativa oil methyl esters were evaluated and discussed with reference to ASTM D 6751 and EU 14214 biodiesel specifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.