Abstract

The objectives of the present study were to explore the benzyl butyl phthalate (BBP) and dimethyl phthalate (DMP) degradation potential of Bacillus marisflavi RR014 isolated from the tap water of public toilet and also to optimize the phthalates degradation process using response surface methodology. The minimal salt medium was used for the biodegradation analysis of phthalates. The quantification of phthalates and their intermediate metabolites identification were done by using UHPLC and LC-MS/MS respectively. The results revealed that B. marisflavi RR014 is capable of degrading both the phthalates under varying pH, temperature and salinity conditions. The formation of phthalic acid from the breakdown of BBP and DMP (500mgl-1 ) in the medium was observed after 24h. After 72h, 61% of BBP and 98·9% of DMP in the medium was degraded as monitored by UHPLC. The identification of intermediate metabolites by LC-MS/MS revealed that hydrolysis of BBP and DMP produces phthalic acid. The degradation rate of both the phthalates was increased as the parameters increased up to an optimum level. The three environmental factors (pH, temperature and salt concentration) strongly affect the rate of degradation of both the phthalates. The maximum degradation rate for both the phthalates was achieved at pH 7, temperature 35°C and salt concentration of 1% as observed from the central composite experimental design. It is the first report on the phthalates biodegradation potential of B. marisflavi RR014 isolated from the tap water of public toilet. The bacterium is capable of degrading BBP and DMP under varying pH, temperature and salinity, therefore, ideal to treat the phthalate contaminated environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.