Abstract

The endocrine-disrupting chemical bisphenol A (BPA) has attracted much attention because of its estrogenic activity and widespread environmental contamination. In this study, we investigated the BPA biodegradation abilities of various bacterial strains isolated from deserts and arid soils from southern Tunisia. Ten bacterial strains that belong to Pseudomonas putida, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella sp. and Pantoea sp. showed high BPA removal potential in mineral salt medium (MSM) containing 1mM BPA. BPA removal rates varied between strains and ranged from 36 to 97%. The strain G320 (P. putida) presented the highest BPA removal rate with 97% within 4days at 30°C. The half-life when increasing the BPA concentration to 3mM was 2days for strain G320, while total degradation was achieved within 8days. BPA biodegradation products were identified by GC-MS, and their toxicity was assessed by an algal toxicity test. BPA detoxification was confirmed by evaluating the effect of its biodegradation metabolites on algal growth (dry weight), cells morphology and chlorophylls levels of Tetraselmis sp. strain V2. Results showed the interesting potential of desert soil's bacteria in BPA detoxification as well as the eventual use of the algal specie in toxicity assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.