Abstract

Biodegradable three-layer gelatin film was obtained by heat – compression of piled dialdehyde starch (DAS) – cross-linked and plasticized-gelatin films (Ge-10DAS) outer layers and sodium montmorillonite (MMt) – plasticized – gelatin film (Ge-5MMt) inner layer. Multilayer film displayed a compact and uniform microstructure due to the highly compatible individual layers which could interact by strong hydrogen bonding. Lamination reduced moisture absorption and total soluble matter compared to the single layers while keeping transparency. Tensile strength and elastic modulus of the multilayer were 8.0 ± 1.3 MPa and 14.7 ± 2.4 MPa, which were significantly higher than values obtained for Ge-10DAS due to the contribution of the of the bio-nanocomposite inner layer. Elongation at break was not affected by lamination meanwhile it had a beneficial effect on barrier properties. Water vapor permeability (WVP) of the multilayer was 0.8 ± 0.1 × 10 −13 kg m Pa −1 s −1 m −2 which was lower than those of the individual components whereas oxygen permeability was similar to that of Ge-5MMt (10.5 ± 0.4 cm 3(O 2) mm m −2 day −1) and lower than that of Ge-10DAS film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.