Abstract

Medical-grade polymers present challenges in long-term healthcare waste management due to resistance in degradation mechanisms. Collaborative nanocomposite technology in biomedical polymers holds promise for enhancing biodegradability. This study examined the biodegradability of LLDPE/TiO2-ZnO film in various environmental conditions (compost soil, pond soil, coastline, and landfill soil, hydrolytic and simulated body fluid models) and further assessment using field emission scanning electron microscopy (FESEM) and Coupled Plasma Optical Emission spectroscopy. Nanocomposite present in LLDPE polymer could enhance the biodegradability potential of the film possibility via hydrolysis and free radicals’ activities, especially in high moisture content environment. Deformation holes in the film were observed via FESEM confirming degradability activities. The biodegradability rate is also could be influenced by microbe-rich environments. The insights gained from this study have the potential to contribute to the advancement of biodegradable polymers and the improvement of waste management technology in the healthcare industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.