Abstract

Biodegradable metals have great attraction to become orthopaedic implants. Here, we demonstrated a biodegradable magnesium alloy incorporated with essential element sodium through Sn-Na master alloying technique. The designed MgSnZnNa alloy presented better hardness and corrosion resistance due to the uniform distribution of Na in Mg2Sn second phase and solid soluble Zn in Mg matrix. The co-release of Mg and Na ions resulted in advanced upregulation of osterix and osteocalcin expression in adipose derived stem cells in vitro. It significantly promoted the rat calvarial defect bone regeneration through osteogenesis and angiogenesis, attributed to the co-release of Na and Mg ions, by increasing the expression of calcitonin gene-related peptide, osteocalcin as well as vascular endothelial growth factor. The current study provided an innovative approach by using master alloy to incorporate essential elements (such as Na or K) for fabricating biodegradable Mg alloys with reduced galvanic corrosion and enhanced biological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.