Abstract

Alleviation of tumor hypoxia has been the premise for improving the effectiveness of radiotherapy, which hinges upon the advanced delivery and rapid release of oxygen within the tumor region. Herein, we propose a "bubble-enhanced oxygen diffusion" strategy to achieve whole tumor oxygenation for significant radiation enhancement based on the "bystander effect". Toward this end, sub-50 nm CuS-modified and 64Cu-labeled hollow mesoporous organosilica nanoparticles were constructed for tumor-specific delivery of O2-saturated perfluoropentane (PFP). Through the aid of PFP gasification arising from NIR laser-triggered mild hyperthermia, simultaneous PET/PA/US multimodality imaging and rapid oxygen diffusion across the tumor can be achieved for remarkable hypoxic radiosensitization. Furthermore, the multifunctional oxygen-carrying nanotheranostics also allow for other oxygen-dependent treatments, thus greatly advancing the development of bubble-enhanced synergistic therapy platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.