Abstract
Cotton gin trash (CGT), a potential lignocellulose resource was combined with poly(vinyl alcohol) (PVA) to produce the biodegradable composite plastic film. A 50:50 CGT/PVA ratio was maintained using coarse and fine CGT powder particles and the effect of particle size on the morphology, crystallinity, tensile strength, optical transmittance, thermal stability and biodegradability was investigated. Scanning electron microscope (SEM) image showed uniform distribution of CGT in PVA matrix particularly of the fine powders (~5.7 μm). The incorporation of CGT in PVA enhanced the tensile strength, biodegradability, thermal stability and induced complete UV protection. Overall, while the flexibility of the composite film decreased, the tensile strength increased 10% and 20%, respectively by the coarse and fine CGT powders when compared to the pure PVA film. Considering the fabrication cost as estimated in the study, the results point towards the immense potential of CGT as a low-cost reinforcement material for PVA to be successfully used in the production of biodegradable plastic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.