Abstract

Silk fibroin powder and biodegradable polybutylene adipate terephthalate (PBAT)/poly lactide (PLA) blends were melt-mixed together to fabricate natural and synthetic polymers as possible new sources of biomaterials. Morphological observations conducted through scanning electron microscopy indicated poor dispersion of the silk powder agglomerates, which resulted from strong hydrogen interactions between silk powder chains in the PBAT/PLA matrix. Although the silk powder agglomerates decreased the mechanical properties, as silk powder fractions increased, the ternary blend with 10 wt % silk powder still displayed high impact strength of 108 J/m and tensile modulus of 1.2 GPa. On the basis of mechanical analysis, this blend offered potential applications in fields which required high impact strength. Blends which contained Joncryl experienced a decrease in storage modulus. Furthermore, rheological studies confirmed that the viscosity of the PBAT/PLA/Silk powder blends decreased, which indicated possible weakening of hydrogen bonds between the silk chains, caused by the reaction between the epoxy groups of Joncryl. This reaction provides a possible method to improve the processability of this natural polymer and to improve its distribution in polymer blends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.