Abstract
Nanophase separation has been suggested to influence the biological performance of polyurethane. In a previous work, six different 4,4'-diphenylmethane diisocyanate (MDI)-based poly(carbonate urethane)s (PCUs) that exhibited various degrees of nanophase separation were synthesized and characterized. In the present work, these PCUs were used as a model system to study the effect of nanometric structures on the biocompatibility of polyurethane. Human blood platelet activation, monocyte activation, protein adsorption, and bacterial adhesion on PCU were investigated in vitro. It was found that human blood platelets as well as monocytes were less activated on the PCU surfaces with a greater degree of nanophase separation in general. This phenomenon was closely associated with the lower ratio of human fibrinogen/albumin competitively adsorbed on these surfaces. Bacterial adhesion was also inhibited in some nanophase-separated PCUs. [diagram in text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.