Abstract

Nowadays it is known that neural cells are capable of regenerating after brain injury, but their success highly depends on the local environment, including the presence of a biological structure to support cell proliferation and restore the lost tissue. Different chitosan-based biomaterials have been employed in response to this necessity. We hypothesized that hydrogels made of antioxidant compounds functionalizing chitosan could provide a suitable environment to home new cells and offer a way to achieve brain repair. In this work, the implantation of functionalized chitosan biomaterials in a brain injury animal model was evaluated. The injury consisted of mechanical damage applied to the cerebral cortex of Wistar rats followed by the implantation of four different chitosan-based biomaterials. After 15 and 30 days, animals underwent magnetic resonance imaging, then they were sacrificed, and the brain tissue was analyzed by immunohistochemistry. The proliferation of microglia and astrocytes increased at the lesion zone, showing differences between the evaluated biomaterials. Also, cell nuclei were seen inside the biomaterials, indicating cell migration and biodegradation. Chitosan-based hydrogels are able to fill in the tissue cavity and bare cells for the endogenous restoration process. The addition of ferulic and succinic acid to the chitosan structure increases this capacity and decreases the inflammatory reaction to the implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.