Abstract
This study uses Bayesian networks (BNs) to simulate the spatial distribution of southern African biomes and bioregions using bioclimatic variables. Two Tree-Augmented Naive (TAN) BN models were parameterized from 23 bioclimatic variables using the expectation-maximization (EM) algorithm. Using sensitivity analyses, the relative influence of each variable was determined using the mutual information from which six bioclimatic variables were selected for the final models. Precipitation of the warmest quarter and extra-terrestrial solar radiation was found to be the most influential variables on both bioregion and biome distributions. Isothermality was the least influential bioclimatic variable at both bioregion and biome levels. Overall correspondence was very high at 93.8 and 87.1% for biomes and bioregions, respectively, whereas classification errors were obtained in transition areas indicating the uncertainties associated with vegetation mapping around margins. The findings indicate that southern African bioregions and biomes can be classified and mapped according to key bioclimatic variables. Spatio-temporal, in particular, monthly and quarterly variations in both precipitation and temperature are found to be ecologically significant in determining the spatial distribution of biomes and bioregions. The findings also reflect the hierarchical relationship of biomes and bioregions as a function of local bioclimatic gradients and interactions. The results indicate the ecological significance of bioclimatic conditions in ecosystem science and offer the opportunity to utilize the models for predicting future responses and sensitivities to climatic changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.