Abstract
The effects of acute and long-term changes in temperature upon catalytic and calcium regulatory function of red (slow oxidative) and white (fast glycolytic) muscle from striped bass (Morone saxatilis) were determined. Acclimation to 5 degrees C or 25 degrees C had no significant effect on catalytic function (ATPase activity) or regulatory sensitivity (Ca++-activation) of myofibrils from either muscle type. Substantial differences between red and white muscle were found in the intrinsic thermal sensitivity of maximally-activated Mg++-Ca++ myofibrillar ATPase. Arrhenius plots of myofibrillar ATPase from white muscle show one significant breakpoint at 29 degrees C, with activation energies (Ea) of 2.3 and 23.4 kcal mole-1 at temperatures above and below this transition, respectively. Arrhenius plots of myofibrillar ATPase from red muscle show two transitions occurring at 22 and 9 degrees C, with Ea of 7.6 kcal mole-1 above 22 degrees C and 18.3 kcal mole-1 between 9 and 22 degrees C. Activation energies for myofibrils from red muscle increase substantially to approximately 107.3 kcal mole-1 below the 9 degrees C breakpoint. Differences in the intrinsic thermal sensitivity of red and white muscle catalytic function are apparently due to interaction of actomyosins and calcium regulatory proteins which are specific to each muscle type. The results suggest that capacity for sustained swimming in striped bass, which is powered exclusively by red muscle, will be severely impaired at cold temperature unless compensations occur above the level of contractile proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.