Abstract

Correlative biochemical and electron microscopic alterations were observed in chick embryo myoblasts in vitro after treatment with fluoroacetate. Fluoroacetate poisoning caused an increase of citrate and a decrease of ATP in the cultures. Cell respiration was only slighly impaired by fluoroacetate in the first 10 min but was inhibited to 30% one hour after exposure to the poison. Fluoroacetate did not affect oxidative phosphorylation. The evidence suggests that fluoroacetate was transformed in myoblasts into fluorocitrate which inhibited the mitochondrial-bound aconitate hydratase as in adult tissues. Ultrastructural changes in the majority of the fluoroacetate-treated cells were observed. Very few myoblasts appeared unaffected by the poison. Mitochondria were specifically altered. The early changes occurred in the mitochondrial matrix where the inhibited enzyme is known to be located and were followed by modifications in the configuration and structure of cristae. Exogenous fluorocitrate caused ultrastructural changes in the mitochondria similar to that provoked by fluoroacetate. The localization of the early change in the mitochondrial matrix and the evaluation of the structural modifications suggest a correlation between the biochemical lesion, i.e. the inhibition of aconitate hydratase, and the change revealed in the mitochondrial structure containing the inhibited enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.