Abstract

Increasing interest in biomining process and the demand for better performance of the process has led to a new insight toward the mining technologies. From an engineering point of view, the complex network of biochemical reactions encompassed in biomining would best be performed in reactors which allow a good control of the significant variables, resulting in a better performance. The subprocesses are in equilibrium when the rate of particular metal ion; for example, iron turnover between the mineral and the bacteria, is balanced. The primary focus is directed towards improved bioprocess kinetics of the first two subprocesses of chemical reaction of the metal ion with the mineral and later bacterial oxidation. These subprocesses are linked by the redox potential and controlled by maintenance of an adequate solids suspension, dilution rate, and uniform mixing which are optimised in bioreactors during mining operations. Rate equations based on redox potential such as ferric/ferrous-iron ratio have been used to describe the kinetics of these subprocesses. This paper reviews the basis of process design for biomining process with emphasis on engineering parameters. It is concluded that the better understanding of these engineering parameters will make biomining processes more robust and further help in establishing it as a promising and economically feasible option over other hydrometallurgical processes worldwide.

Highlights

  • Biomining is gaining importance as a unit process which involves biological organisms in mineral extraction industries worldwide

  • The primary focus is directed towards improved bioprocess kinetics of the first two subprocesses of chemical reaction of the metal ion with the mineral and later bacterial oxidation. These subprocesses are linked by the redox potential and controlled by maintenance of an adequate solids suspension, dilution rate, and uniform mixing which are optimised in bioreactors during mining operations

  • The reactors which are mostly used in commercial mining plants operating continuously and in biohydrometallurgical laboratories are the stirred tank reactor (STR) and the airlift reactor (ALR) or pneumatic reactor (PR) of the Pachuca type

Read more

Summary

Introduction

Biomining is gaining importance as a unit process which involves biological organisms in mineral extraction industries worldwide. With the decreasing high grade ore reserves and increased concern regarding the effect of mining on the environment, biomining technology, which was age old deserted technique, is being developed as a main process in the mining industry to meet the demand [1]. Gahan et al [2] comparatively analysed how gold and copper biomining operations played a role with the increase or decrease in metal pricing over time Their analysis indicated that most biohydrometallurgical innovations have been commercially implemented during leaner times [3]. Economic factors such as eliminations of net Smelter Royalties associated with smelting and refining and possibility of the use bioleaching for on-site acid production to eliminate or reduce acid purchases are the reasons behind this observation This has made us look toward the biomining with a broader insight into performance and profit oriented research to meet the commercial requirements. In this paper we discuss many of the theoretical considerations regarding the development of process for application of continuous-flow stirred-tank reactors in biomining with focus on different engineering parameters which should be taken into consideration for better control and design of biomining processes

Mining Mechanisms and Stoichiometry
Process Kinetics
Gas-Liquid Mass Transfer
Solid Suspension and Mixing
Continuous Process Dilution Rate
Microbial Community Structure
Findings
Conclusions and Perspectives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.