Abstract

BackgroundAlanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized.ResultsThe results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg).ConclusionsComparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.

Highlights

  • Alanine decarboxylase (AlaDC), present in tea plants, is crucial for theanine biosynthesis

  • A previous study revealed that the differential accumulation of theanine between C. sinensis and other species could be attributed to the availability of ethylamine [18], indicating that CsAlaDC was a crucial enzyme in theanine biosynthesis pathway

  • New gene alanine decarboxylase (AlaDC) originated from Serine decarboxylase (SDC) by gene duplication New genes were defined as those that are present in all members of a monophyletic group but absent from all outgroup species [20]

Read more

Summary

Results

The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg)

Conclusions
Background
Results and discussion
Conclusion
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.