Abstract

Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.