Abstract

Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA.1 intron specifies a site-specific DNA endonuclease, designated I-CMOE:I. Like most previously reported intron-encoded endonucleases, I-CMOE:I generates a double-strand break near the insertion site of its encoding intron, leaving 3' extensions of 4 nt. This enzyme was purified from Escherichia coli as a fusion protein with a His tag at its N-terminus. The recombinant protein (rI-CMOE:I) requires a divalent alkaline earth cation for DNA cleavage (Mg(2+) > Ca(2+) > Sr(2+) > Ba(2+)). It also requires a metal cofactor for DNA binding, a property shared with H-N-H colicins but not with the homing endonucleases characterized to date. rI-CMOE:I binds its recognition sequence as a monomer, as revealed by gel retardation assays. K:(m) and k(cat) values of 100 +/- 40 pM and 0.26 +/- 0.04 min(-1), respectively, were determined. Replacement of the first histidine of the H-N-H motif by an alanine residue abolishes both rI-CMOE:I activity and binding to its substrate. We propose that this conserved histidine residue plays a role in binding the metal cofactor and that such binding induces a structural modification of the enzyme which is required for DNA recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.