Abstract

Anopheles stephensi is a key urban malaria vector in the Indian subcontinent and Middle East including south and southeast of Iran. Wide application of insecticides resulted in resistance of this species to various insecticides in these regions. This study was conducted to reveal the role of metabolic mechanisms in the development of resistance in An. stephensi to DDT and cyfluthrin. Field mosquito specimens were collected from Chabahar Seaport, southeast corner of Iran, in 2015. Insecticide susceptibility and enzyme assays were conducted as recommended by WHO. Mean enzyme ratios were 3.95 and 3.04 for α- esterases and 2.40 and 1.97 for β- esterases in the DDT and cyfluthrin- resistant populations correspondingly compared with the susceptible strain. The GSTs enzyme mean activity ratios were 5.07 and 2.55 in the DDT and cyfluthrin- resistant populations compared with the susceptible beech strain. The cytochrome p450s enzyme ratios were 1.11 and 1.28 in the DDT and cyfluthrin- resistant populations respectively compared with the susceptible beech strain. Metabolic mechanisms play a crucial role in the development of DDT and cyfluthrin resistance in An. stephensi, therefore, further evaluation of the mechanisms involved as well as implementation of proper insecticide resistance management strategies are recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.