Abstract

Flower-specific benzenoid carboxyl methyltransferases from Stephanotis floribunda and Nicotiana suaveolens were biochemically and structurally characterized. The floral scents of both these species contain higher levels of methyl benzoate and lower levels of methyl salicylate. The S. floribunda enzyme has a 12-fold lower K(m) value for salicylic acid (SA) than for benzoic acid (BA), and results of in silico modeling of the active site of the S. floribunda enzyme, based on the crystal structure of Clarkia breweri salicylic acid methyltransferase (SAMT), are consistent with this functional observation. The enzyme was therefore designated SAMT. The internal concentration of BA in S. floribunda flowers is three orders of magnitude higher than the SA concentration, providing a rationale for the observation that these flowers synthesize and emit more methyl benzoate than methyl salicylate. The N. suaveolens enzyme has similar K(m) values for BA and SA, and the in silico modeling results are again consistent with this in vitro observation. This enzyme was therefore designated BSMT. However, the internal concentration of BA in N. suaveolens petals was also three orders of magnitude higher than the concentration of SA. Both S. floribunda SAMT and N. suaveolens BSMT are able to methylate a range of other benzenoid-related compounds and, in the case of S. floribunda SAMT, also several cinnamic acid derivatives, an observation that is consistent with the larger active site cavity of each of these two enzymes compared to the SAMT from C. breweri, as shown by the models. Broad substrate specificity may indicate recent evolution or an adaptation to changing substrate availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.