Abstract

ABSTRACTB-biotype Bemisia tabaci has developed high levels of resistance to many insecticides. To investigate the risks and explore possible mechanisms of resistance to diafenthiuron in B. tabaci, a 32.8-fold diafenthiuron-resistant strain (R-DfWf) was established after selection for 36 generations compared with the susceptible strain (S-Lab). Biochemical assays showed that the activity of cytochrome P450 towards p-NA was significantly higher (4.37-fold higher) in the R-DfWf strain than in the S-Lab strain. Similarly, the carboxylesterase (COE) activity and glutathione S-transferase (GST) activity were also significantly higher (3.12- and 1.83-fold higher, respectively) in the R-DfWf strain than in the S-Lab strain. The expression of five of seven P450 genes was significantly higher (>3-fold) in the R-DfWf strain than in the S-Lab strain. The expression of COE2 was significantly higher (>2.5-fold) in the R-DfWf than in the S-Lab strain. The expression of GST and GST2 was significantly higher (>2.3-fold) in the R-DfWf than in the S-Lab. Thus, cytochrome P450, COE and GST may appear to be responsible for the resistance to diafenthiuron in B. tabaci. It is also valuable for usage of insecticides for resistance management and control of this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.