Abstract

Pretreatment of mouse mast cells with 10(-7) to 10(-6) M dexamethasone (DM) during overnight sensitization with mouse IgE antibody resulted in inhibition of antigen-induced histamine release and degranulation. The inhibition of both degranulation and histamine release increased linearly with the duration of the treatment; maximal inhibition was obtained after approximately 16 hr with DM. The addition of DM to sensitized mast cells immediately before antigen challenge did not affect the antigen-induced histamine release. DM interacted directly with mast cells by binding to DM-specific cytoplasmic receptors. The treatment of mast cells with DM did not affect the binding of IgE to mast cells or intracellular cAMP levels. Bridging of cell-bound IgE anti-DNP antibody on mouse mast cells either by multivalent DNP-HSA or by anti-IgE induced phospholipid methylation at the plasma membrane and Ca++ influx into the cells. Pretreatment of mast cells with DM inhibited the antigen-induced phospholipid methylation and Ca++ uptake but failed to affect histamine release by Ca++ ionophore A23187. The results suggest that DM treatment inhibits histamine release by the inhibition of the early stage of biochemical processes leading to opening Ca++ channels but does not affect the process distal to Ca++ influx or the binding of IgE molecules to IgE receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.