Abstract

Salinity is one of the main abiotic stresses, and the stomatal conductance (gs) is an important physiological index in plants that is used to measure their responses to salt stress, as stomatal closure leads to lower yields. However, the factors that affect the gs after biochar application in saline soil remain unclear. To explore the stomatal adaptation mechanisms of facility vegetables under salt stress after the addition of biochar, Chinese cabbage was selected for the pot experiment in this study. The soil and plant Na+ and K+ concentrations, water status, and plant stomatal parameters were measured following treatments with different salt concentrations (25, 50, and 100 mM) and biochar application rates (0, 2, and 4%). The results showed that salt stress induced the physiological closure of the stomata in Chinese cabbage. Compared with the salt-stress treatment without biochar, the biochar application significantly increased the plant gs (20.29–128.79%). Moreover, in the biochar treatment, the open state of the stomata was maintained by sustaining the plant osmotic adjustment, reducing the abscisic acid (ABA) content, and improving the water status. The Na+/K+ ratio had the most pronounced effect on the stomata (0.702). The actual photochemical efficiency of the photosystem II (ΦPSII) and electron transport rate (ETR) of the Chinese cabbage increased by 0.75–3.41% and 0.65–2.88%, respectively, after the biochar application, which supported the photosynthetic capacity and yield formation. According to the current findings, biochar application can mitigate salt stress and regulate stomatal opening, thereby improving the photosynthesis and the overall yield of Chinese cabbage. Therefore, the application of biochar is a promising method to maintain the productivity of Chinese cabbage under salt stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.