Abstract

The development of high-performance recyclable polymers represents a circular plastics economy to address the urgent issues of plastic sustainability. Herein, we design a series of biobased seven-membered-ring esters containing aromatic and aliphatic moieties. Ring-opening polymerization studies showed that they readily polymerize with excellent activity (TOF up to 2.1 × 105 h-1) at room temperature and produce polymers with high molecular weight (Mn up to 438 kg/mol). The variety of functionalities allows us to investigate the substitution effect on polymerizability/recyclability of monomers and properties of polymers (such as Tgs from -1 to 79 °C). Remarkably, a stereocomplexed P(M2) exhibited significantly increased Tm and crystallization rate. More importantly, product P(M)s were capable of depolymerizing into their monomers in solution or bulk with high efficiency, thus establishing their circular life cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.