Abstract

Antioxidant and antimicrobial free-standing films composed of nanofibrillated cellulose (NFC) and a polyphenolic-rich extract, viz. mango leaf extract (MLE), were produced via supercritical solvent impregnation (SSI) and conventional solvent casting film-processing methodologies. The CO2-assisted impregnation of NFC with MLE created robust films with thermal stability up to 250 °C, good mechanical performance (Young's modulus > 4.7 GPa), UV-light barrier properties, antioxidant capacity with maximum inhibition percentage of ca. 84%, and antimicrobial activity against Staphylococcus aureus (growth inhibition ≈ 37%) and Escherichia coli (growth inhibition ≈ 91%). The comparison of the NFC/MLE films prepared by SSI with those fabricated via solvent casting shows a clear advantage of the SSI methodology. Particularly, the antioxidant and antimicrobial activities are visibly higher in the films fabricated by the CO2-assisted impregnation of MLE into NFC. In fact, for the SSI films, the MLE components are mostly adsorbed at the surface and not in the bulk of the biopolymeric matrix, which translates into faster migrations and, hence, higher active properties. All these findings evinced the potential performance of the NFC/MLE films prepared by the eco-friendly SSI as UV-blocking, antioxidant, and antimicrobial bio-based materials for application as sustainable active food packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.