Abstract
Lentil grains treated with malathion and stored under laboratory conditions for 12 months formed bound residues. Bioavailability and the effects of lentil-bound residues of malathion in rats were studied. The amount of bound residues in lentils treated with 14C-malathion at 10 ppm and 50 ppm gradually increased to 9.52% and 13.01% of the initially applied doses after 12 months. When rats were fed these 14C-bound residues, radioactivity excreted in urine accounted for 34.49% of the administered dose. In feces, 26.15% of given dose was methanol-extractable while 18.67% was determined as nonextractable. Various tissues including liver, kidney, fat and lungs contained 8.93% while radioactivity in expired air (14CO2) was low (1.51%). The results indicate that lentil-bound malathion residues are highly bioavailable to rats. Analysis of the lentil material containing bound residues indicated that the main compound was malathion. Lentil-bound malathion residues were administered to albino rats at 0.95 and 6.51 ppm in the feed for 3 months. Body weights were determined during and at the end of the experiment. Terminal organ weights were also determined and a number of blood chemistry parameters were examined. A significant reduction in serum cholinesterase activity and an increase in blood urea nitrogen and in white cell count suggest a toxocological potential of the bound residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.