Abstract

Six laboratory-scale constructed wetlands (CWs) were used to quantify the nitrogen removal (NR) capacity in the treatment of saline wastewater at high (6:1) and low (2:1) carbon–nitrogen ratios (C/N), with and without bioaugmentation of aerobic-denitrifying bacterium. Sustained high-efficiency nitrification was observed throughout the operation. However, under different C/N ratios, although the bioaugmentation of aerobic-denitrifying bacterium promoted the removal of NO3––N and TN, there were still great differences in denitrification. Molecular biology experiments revealed ammonia-oxidizing archaea, together with the Nitrosomonas and Nitrospira, led to highly efficient nitrification. Furthermore, aerobic-denitrifying bacterium and sulfur-driven denitrifiers were the core denitrification groups in CWs. By performing these combined experiments, it was possible to determine the optimal CW design and the most relevant NR processes for the treatment of salty wastewater. The results suggest that the bioaugmentation of salt-tolerant functional bacteria with multiple NR pathways are crucial for the removal of salty wastewater pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.